

Int:net Final Conference

Making it happen
Diana Jimenez | Trialog
Carlos Ayon Mac Gregor | B.A.U.M.

Understanding potentials and hurdles of interoperability in practice

Introduction to the newly developed ontology constraints tester

Diana Jimenez | Trialog

The interoperability challenge

"Smart appliances are key to the energy transition —

but what happens if a dishwasher from brand A can't 'talk' properly with a home energy manager from brand B?"

Objective: Support engineers to verify/ensure/validate the interoperability compliance of data exchange for various systems with ontologies (e.g., SAREF).

Context:

- Started in <u>INT:NET</u> project to be continued in <u>Hedge-IoT</u> project.
- Based on the JRC for ESA CoC methodology interoperability test method and needs
- Built on SAREF ontology (ETSI SAREF) but extensible to any ontology

Why this tool matters now

Ontology = Single Source Of Trust (SSOT)

"Without a neutral, ontology-driven tester, each company reinvents its own method, slowing down adoption and increasing costs"

Motivation drivers

- **Energy transition** → more renewables, need for flexibility
- **Rapid digitalization** → more machine-to-machine data exchange
- **Cost optimization** \rightarrow testing interoperability early saves money for manufacturers
- **Regulatory push** → GDPR, AI Act (GDPR, AI Act)

1st identified: verify compliance with the Code of Conduct for Smart Home Appliances (CoC-ESA) established by the European Commission's JRC and DG ENER.

Challenges we target

- How to verify semantic + behavioural (next) interoperability in practice?
- How to help engineers integrate ontologies without reinventing the wheel?

Use cases – Making it concrete

- **Energy Smart Appliances (ESA)** defined in CoC:
 - "Products that provide energy flexibility through machine-to-machine communication."
- Domains:
 - Home appliances (washing machines, dryers, dishwashers)
 - HVAC + water heating
- 5 key use cases defined by JRC CoC:
 - Flexible start: → Verifying the order of messages between Customer Energy Manager ↔ Appliance <---

- Limitation of power consumption
- Manual operation
- Monitoring of power consumption
- Incentive-based consumption management
- Manufacturers who sign CoC commit to:
 - Launch at least one ESA model per year
 - Ensure interoperability via SAREF & SAREF4ENERInform consumers about available use cases

What we've built so far

"Until now, standards stayed on paper. With ODC-Tester, they become testable, verifiable, and actionable"

- Full paper accepted at the 6th Knowledge Graphs & Semantic Web Conference 2024
- Methodology, dataset design & validation results publicly documented

O Synthetic-Dataset

- Generated from the JRC CoC "Flexible Start" use case
- Four JSON/RDF packs (1 fully compliant + 3 seeded-error variants)
- 100% detection (accuracy & robustness) in compliance tests

Working Prototype

- Django-based web UI for dataset upload & SHACL validation
- Automated PDF report generator using ReportLab
- rdflib + pySHACL Library fully integrated with Ontology Engine

Open Research Artifacts

Datasets, SHACL shapes & validation outputs available on Zenodo

Int:net → Semantic testing (1st proof of concept achieved)

ODCT tool presented at the JRC CoC ESA plenary (18 Sept 2024);

Int:net (Deliverable D3.1)

TRL 3

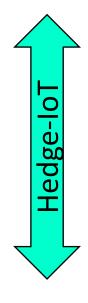
Design of an Ontology-Driven Constraint Tester (ODCT) and Application to SAREF & Smart Energy Appliances

Torrej Mrt Bakini Hossain Chy-¹⁸⁸¹ (802 - 2802 - 2811). Henco ambierg/1808 - 904 - 5213 - 684, Oltsier Genani/1809 - 682 - 732 - 684, Antoni Keng/1809 - 2004 - 684 - 685, Cafelle Rabeni/1809 - 681 - 683 - 4817). Dince Schilban/1809 - 680 - 3165 - 5281), and Amélie Gyman/1809 - 683 - 283 - 4817).

Trialog, Peris, France

Next steps: From int:net and beyond

"Next version = not just checking messages, but verifying full conversations between systems"


- Current situation:
 - JRC's Code of Conduct (CoC ESA) already defines use cases and requires compliance.
 - BUT: It mainly checks semantic correctness (the data format), not behavior (the sequence of actions).
 - Result: integration delays, hidden costs, and missed energy flexibility opportunities.

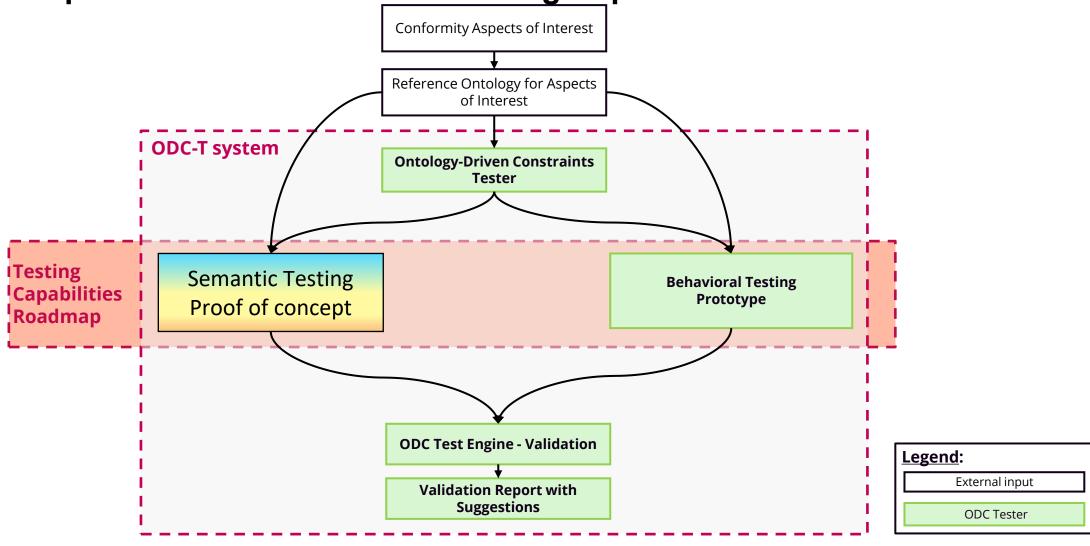
Latest achievements connection with Next Steps:

Now aligned with ISO/IEC 21823-5 (link) and EEBUS Spine WG (EEBUS)

TRL 2

Hedge-loT

Next steps: Behavioural testing

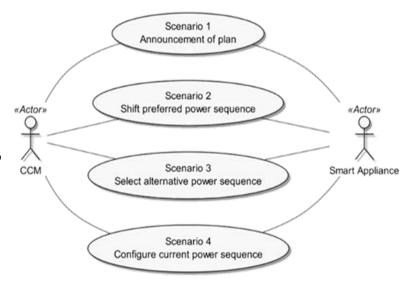

"Semantic validation is like checking if two people speak the same language. Behavioral testing is making sure they can actually have a meaningful conversation"


- Transition from prototype → production-ready tool
- Roadmap:
 - Select methodology for behavioural testing
 - Prototype & test behavioural architecture
 - Extend validation with real manufacturer data (as soon as available)
 - Continue contributions: JRC CoC Phase 2, ISO/IEC 21823-5, EEBUS Spine WG
 - Internal validation with project partners
- Outlook:

Potential beyond energy: IoT ecosystems, mobility, healthcare devices

Next steps: ODC-Tester – Overall Testing Capabilities

Q&A: Understanding potentials and hurdles of interoperability in practice


Introduction to the newly developed ontology constraints tester

Diana Jimenez | Trialog

Carlos Ayon Mac Gregor | B.A.U.M.

What is behavioral testing?

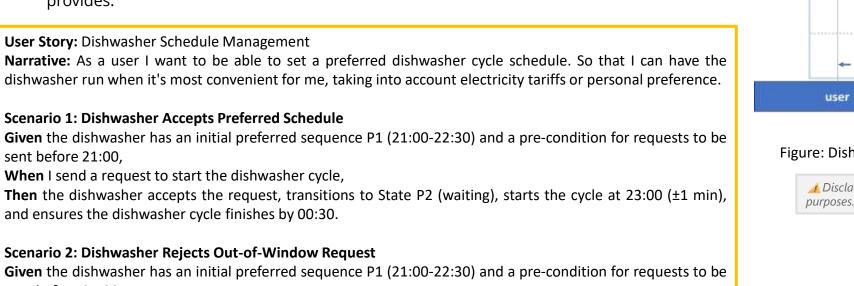
- ISO/IEC 21823-5 definition:
 - "Interoperability so that the actual result achieves the expected outcome."
- Focus on dynamic behaviour:
 - State transitions
 - Timing/synchronization
 - Policy rules
- Technique: Given–When–Then + state machines

View of the different scenarios for the Flexible Start use case of the JRC's CoC

Actions

- Target use case: CoC-ESA "Flexible Start" (Scenario 3)
- Standards & ecosystem: participation in EEBUS SPINE IoT WG; alignment with JRC CoC,
- ISO/IEC 21823-5 and EN 50631-3-1
- Expected deliverables: conformance reports and reusable test templates for manufacturers

What is behavioural testing?


Behavioral Testing (definition)

- From ISO/IEC 21823-5: "Interoperability so that the actual result achieves the expected outcome."
- Focuses on **dynamic behavior** \rightarrow state transitions, timing, and policy rules over time.
- Validates how a system behaves during operation, not just what data it provides.

sent before 21:00.

When I send a request that does not meet the pre-condition (e.g., after 21:00),

Then the dishwasher rejects the request.

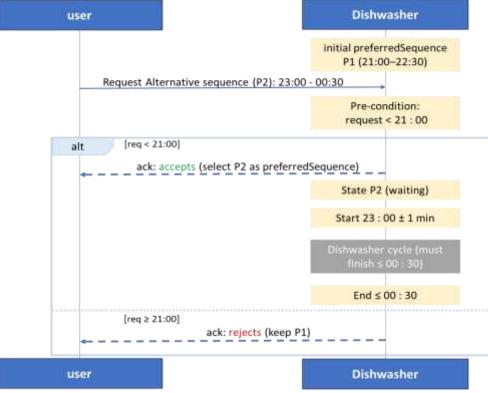


Figure: Dishwasher (Select Alternative Power Sequence) Sequence diagran

⚠ Disclaimer: This example scenario is a simplified example used for demonstration purposes. Actual appliance behavior, requirements, or timing constraints may vary.

Thank you for your attention.

Diana Jimenez | Trialog Carlos Ayon Mac Gregor | B.A.U.M.